Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38572889

RESUMO

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Assuntos
Annona , Curcumina , Ratos , Animais , Aflatoxina B1/toxicidade , Curcumina/farmacologia , Alanina Transaminase/farmacologia , Fosfatase Alcalina/farmacologia , Creatinina/farmacologia , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Aspartato Aminotransferases/farmacologia , Lactato Desidrogenases
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 172-180, 2024 Apr 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38597077

RESUMO

OBJECTIVES: The effect of TiO2 nanotube morphology on the differentiation potency of senescent periodontal ligament stem cells was investigated. METHODS: Two types of titanium sheets with TiO2 nanotube morphology (20V-NT and 70V-NT) were prepared via anodic oxidation at 20 and 70 V separately, and their surface morphology was observed. Young periodontal ligament stem cells were cultivated in an osteogenic induction medium, and the most effective surface morphology in promoting osteogenic differentiation was selected. RO3306 and Nutlin-3a were used to induce the aging of young periodontal ligament stem cells, and senescent periodontal ligament stem cells were obtained. The osteogenic differentiation of senescent periodontal ligament stem cells was induced, and the effect of surface morphology on osteogenic differentiation was observed. RESULTS: Nanotube morphology was achieved on the surfaces of titanium sheets through anodic oxidation, and the diameters of the nanotubes increased with voltage. A significant difference in the effect of nanotube morphology was found among nanotubes with different diameters in the young periodontal ligament stem cells. The surface nanotube morphology of 20V-NT had a more significant effect that promoted osteogenic differentiation. Compared with a smooth titanium sheet, the surface nanotube morphology of 20V-NT increased the number of alkaline phosphatase-positive senescent periodontal ligament stem cells and promoted calcium deposition and the expression of osteogenic marker genes Runt-related transcription factor 2, osteopontin, and osteocalcin. CONCLUSIONS: A special nanotube morphology enhances the differentiation ability of senescent periodontal ligament stem cells, provides an effective method for periodontal regeneration, and further improves the performance of implants.


Assuntos
Implantes Dentários , Osteogênese , Ligamento Periodontal/metabolismo , Titânio/metabolismo , Titânio/farmacologia , Células-Tronco , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia
3.
Braz J Biol ; 83: e272512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422258

RESUMO

This study aimed to correlate the values of liver markers with oxidative stress markers in patients with multidrug-resistant tuberculosis in the Brazilian Amazon. A total of 30 patients from the Tuberculosis clinic of a referral hospital were admitted to the study. Whole blood samples were collected for analysis of liver enzyme values and oxidative stress markers by spectrophotometry. The prevalence was male (60%) and the 18-29 age group was the most affected. Patients with multidrug-resistant tuberculosis presented catalase values with a median equal to 6.94 U/gHb and for glutathione, the median was equal to 14.76 µg∕ml. As for the values of liver enzymes (AST, ALT, Gamma-GT and Alkaline phosphatase) the patients had medians equal to 60.50 (U/L); 80 (U/L); 54 (U/L); and 100 (U/L) respectively (p<0.0001). The results suggest a hepatotoxic effect of the drug, which recommends further studies with a larger number of samples in order to investigate the predictors of liver damage in patients with multidrug-resistant tuberculosis.


Assuntos
Fígado , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Masculino , Brasil , Estresse Oxidativo , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
4.
J Microbiol Biotechnol ; 34(2): 415-424, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044675

RESUMO

This study reveals that low-molecular-weight collagen peptide (LMWCP) can stimulate the differentiation and the mineralization of MC3T3-E1 cells in vitro and attenuate the bone remodeling process in ovariectomized (OVX) Sprague-Dawley rats in vivo. Moreover, the assessed LMWCP increased the activity of alkaline phosphatase (ALP), synthesis of collagen, and mineralization in MC3T3-E1 cells. Additionally, mRNA levels of bone metabolism-related factors such as the collagen type I alpha 1 chain, osteocalcin (OCN), osterix, bone sialoprotein, and the Runt family-associated transcription factor 2 were increased in cells treated with 1,000 µg/ml of LMWCP. Furthermore, we demonstrated that critical bone morphometric parameters exhibited significant differences between the LMWCP (400 mg/kg)-receiving and vehicle-treated rat groups. Moreover, the expression of type I collagen and the activity of ALP were found to be higher in both the femur and lumbar vertebrae of OVX rats treated with LMWCP. Finally, the administration of LMWCP managed to alleviate osteogenic parameters such as the ALP activity and the levels of the bone alkaline phosphatase, the OCN, and the procollagen type 1 N-terminal propeptide in OVX rats. Thus, our findings suggest that LMWCP is a promising candidate for the development of food-based prevention strategies against osteoporosis.


Assuntos
Fosfatase Alcalina , Osteoblastos , Ratos , Animais , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Ratos Sprague-Dawley , Colágeno/metabolismo , Peptídeos/farmacologia , Osteogênese , Osteocalcina/genética , Osteocalcina/metabolismo , Osteocalcina/farmacologia , Diferenciação Celular
5.
Microbiol Spectr ; 11(6): e0206023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796007

RESUMO

IMPORTANCE: Our previous study demonstrated that the expression of lapA was induced under phosphate depletion conditions, but its roles in virulence and biofilm formation by Pseudomonas aeruginosa remain largely unknown. This study presents a systematic investigation of the roles of lapA in virulence induction and biofilm formation by constructing a lapA-deficient strain with P. aeruginosa PAO1. The results showed that deletion of the lapA gene evidently reduced elastase activity, swimming motility, C4-HSL, and 3-oxo-C12-HSL production, and increased rhamnolipid production under phosphate depletion stress. Moreover, lapA gene deletion inhibited PAO1 biofilm formation in porcine skin explants by reducing the expression levels of las and rhl quorum sensing systems and extracellular polymeric substance synthesis. Finally, lapA gene deletion also reduced the virulence of PAO1 in Caenorhabditis elegans in fast-kill and slow-kill infection assays. This study provides insights into the roles of lapA in modulating P. aeruginosa virulence and biofilm formation under phosphate depletion stress.


Assuntos
Infecções por Pseudomonas , Percepção de Quorum , Humanos , Virulência , Pseudomonas aeruginosa , Biofilmes , Fosfatase Alcalina/farmacologia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Fosfatos/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Corantes , Antibacterianos/farmacologia , Proteínas de Bactérias/genética
6.
Cell Biochem Funct ; 41(5): 564-572, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37232472

RESUMO

Numerous signaling pathways are well-known in osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMSCs), including transforming growth factor-beta (TGF-ß) signaling pathway, which sends signals through specific type I and II serine/threonine kinase receptors. However, the key role of TGF-ß signaling during bone formation and remodeling is yet to be studied. A TGF-ß type I receptor inhibitor, SB505124, discovered through a screening of a small molecule library for their effect of osteoblast differentiation of hBMSCs. Alkaline phosphatase quantification and staining were tested as indicators of osteoblastic differentiation and Alizarin red staining was tested as an indicator of in vitro mineralization. Changes in gene expressions were assessed using qRT-PCR. SB505124 showed significant inhibition of the osteoblast differentiation of hBMSCs, as confirmed by reduced alkaline phosphatase, in vitro mineralization, and downregulation of osteoblast-associated gene expression. To further understand the molecular mechanisms involved in the inhibition of the TGF-ß type I receptor, we assessed the effects on signature genes of several signaling pathways identified in the osteoblast differentiation of hBMSCs. SB505124 downregulated gene expression of many genes linked to osteoblast-related signaling pathways including TGF-ß, insulin, focal adhesion, Notch, Vitamin D, interleukin (IL)-6, osteoblast signaling, and cytokines and inflammatory. We report TGF-ß type I receptor inhibitor (SB505124) is a potent inhibitor of osteoblastic differentiation of hBMSCs that could be a valuable innovative therapeutic tool to cure bone disorders with increased bone formation, besides its potential use to treat patients with cancer and fibrosis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Diferenciação Celular , Fator de Crescimento Transformador beta/metabolismo , Osteoblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas
7.
Exp Clin Transplant ; 21(2): 158-170, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36919724

RESUMO

OBJECTIVES: We examined the use of a new approach in nanotechnology and stem cell research as regenerative therapy for bone tissue defects. MATERIALS AND METHODS: We compared in vitro osteogenic potential of human Wharton jelly mesenchymal stem cells using coral granules and poly-L-lactic acid nanofiber according to proliferation (by cck-8 kit) and osteogenes (runt-related transcription factor 2, alkaline phosphatase, osteonectin) by quantitative reverse transcription-polymerase chain reaction, alkaline phosphatase assay, calcium measurement, and assessment of mineralization by Alizarin red and von Kossa staining. To overcome the limitations of natural coral, we made a modification by packaging the coral granules-human Wharton jelly mesenchymal stem cells by nanomembrane-human Wharton jelly mesenchymal stem cells to form sandwich double cell sheets and compared this hole with other holes (one was filled by human Wharton jelly mesenchymal stem cell suspension, and the other was filled by coral granules saturated with preinduced mesenchymal stem cells) by radiological and histopathological studies for repairing the bone gap. RESULTS: Collagen-coated poly-L-lactic acid showed higher mRNA levels for all osteogenes (P < .001), higher alkaline phosphatase and calcium content (P < .001), and greater stainability. Our in vivo experiment showed that the holes implanted with sandwich double cell sheet-poly-L-lactic acid coral were completely filled mature compact bone. The holes implanted with human Wharton jelly mesenchymal stem cells alone were filled with immature compact bone. Holes implanted with coral granules-human Wharton jelly mesenchymal stem cells were filled with condensed connective tissue. CONCLUSIONS: Poly-L-lactic acid nanofiber has greater osteogenic differentiating effect than the coral granules. The new approach of sDCS-PLLA-coral construct proved success for bone regeneration and repairing the bone gap and this may improve the design of tissue constructs for bone tissue regenerative therapy.


Assuntos
Antozoários , Células-Tronco Mesenquimais , Animais , Humanos , Tecidos Suporte , Engenharia Tecidual , Cálcio , Fosfatase Alcalina/farmacologia , Diferenciação Celular , Células Cultivadas
8.
Biotechnol Appl Biochem ; 70(5): 1652-1662, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36942931

RESUMO

Bone tissue engineering deals with the design of bone scaffolds. The selection of porous scaffold for osteoblast attachment and suppression of microbial infections are the major challenges that were addressed by designing gelatin scaffolds conjugated with gymnemic acid. Gelatin scaffold was prepared by loading gymnemic acid and morphological characterization, porosity, water absorption behavior, and biocompatibility of the scaffold were studied. The scaffold was introduced to the rat calvarial bone defect (BD) and analyzed the serum C reactive protein, alkaline phosphatase activity, and histology for 1 month to study the reconstruction. Adult Sprague-Dawley rats were used as sham operated control, animal with BD, and animal with BD which was implanted with scaffold (BDMB). The scanning electron micrograph revealed porous nature of scaffold. There was no significant difference in water absorption ability of scaffold. The C reactive protein was not observed in the serum collected on the 5th day postsurgery, supported the biocompatibility. The alkaline phosphatase activity in BDMB was increased when compared with BD on 15th and 20th day and then decreased. New bone tissue formation was detected with hematoxylin-eosin staining. The scaffold is effective in enhancing bone regeneration, which will have therapeutic significance in orthopedics and dentistry.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Ratos , Animais , Tecidos Suporte/química , Gelatina/farmacologia , Gelatina/química , Fosfatase Alcalina/farmacologia , Ratos Sprague-Dawley , Regeneração Óssea , Água , Porosidade , Osteogênese
9.
Mol Nutr Food Res ; 67(8): e2200825, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36815232

RESUMO

Blood-brain barrier (BBB) impairment is related to the development of Alzheimer's disease (AD), which is dependent not only on tight junction but also on transcytosis of brain endothelial cells (BECs) in the BBB. Aging induces the decrease of ligand-specific receptor-mediated transcytosis (RMT) and the increase of non-specific caveolar transcytosis in BECs, which lead to the entry into parenchyma of neurotoxic proteins and the smaller therapeutic index in central nervous system drug delivery, further provoking neurodegenerative disease. A previous study suggests that sea-derived Antarctic krill oil (AKO) exhibits synergistic effects with land-derived nobiletin (NOB) and theanine (THE) on ameliorating memory and cognitive deficiency in SAMP8 mice. However, it is still unclear whether BBB change is involved. Hence, the effects of AKO combined with NOB and THE on aging-induced BBB impairment, including tight junction between BECs, ligand-specific RMT, and non-specific caveolar transcytosis in BECs, are investigated. The results suggest that AKO exhibits synergistic effects with NOB and THE on regulating ligand-specific RMT in BBB by inhibiting alkaline phosphatase (ALPL). The study provides a potential strategy candidate or targeted dietary patterns to prevent and treat AD by improving the BBB function.


Assuntos
Doença de Alzheimer , Euphausiacea , Doenças Neurodegenerativas , Camundongos , Animais , Barreira Hematoencefálica , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Fosfatase Alcalina/uso terapêutico , Ligantes , Células Endoteliais/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Transcitose , Proteínas de Transporte/metabolismo , Doença de Alzheimer/metabolismo
10.
J Spinal Cord Med ; 46(2): 167-180, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935593

RESUMO

BACKGROUND: Serum alkaline phosphatase (ALP) is measured as an indicator of bone or liver disease. Bone-specific alkaline phosphatase (B-ALP) is an isoform of ALP found in the bone tissue which can predict fractures and heterotopic ossification. OBJECTIVE: The aim of this scoping review was to explore the current use of ALP and B-ALP in studies using humans or animal models of SCI, and to identify ways to advance future research using ALP and B-ALP as a bone marker after SCI. RESULTS: HUMAN STUDIES: 42 studies were included. The evidence regarding changes or differences in ALP levels in individuals with SCI compared to controls is conflicting. For example, a negative correlation between B-ALP and total femur BMD was observed in only one of three studies examining the association. B-ALP seemed to increase after administration of teriparatide, and to decrease after treatment with denosumab. The effects of exercise on ALP and B-ALP levels are heterogeneous and depend on the type of exercise performed. ANIMAL STUDIES: 11 studies were included. There is uncertainty regarding the response of ALP or B-ALP levels after SCI; levels increased after some interventions, including vibration protocols, curcumin supplementation, cycles in electromagnetic field or hyperbaric chamber. Calcitonin or bisphosphonate administration did not affect ALP levels. CONCLUSION: Researchers are encouraged to measure the bone-specific isoform of ALP rather than total ALP in future studies in humans of animal models of SCI.


Assuntos
Conservadores da Densidade Óssea , Traumatismos da Medula Espinal , Humanos , Animais , Fosfatase Alcalina/farmacologia , Osso e Ossos , Remodelação Óssea/fisiologia , Densidade Óssea/fisiologia , Biomarcadores
11.
Cell Biochem Funct ; 41(2): 189-201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36540015

RESUMO

The administration of intermittent parathyroid hormone (iPTH) is anabolic to the skeleton. Recent studies with cultured osteoblasts have revealed that the expression of PHOSPHO1, a bone-specific phosphatase essential for the initiation of mineralisation, is regulated by PTH. Therefore, this study sought to determine whether the bone anabolic response to iPTH involves modulation of expression of Phospho1 and of other enzymes critical for bone matrix mineralisation. To mimic iPTH treatment, primary murine osteoblasts were challenged with 50 nM PTH for 6 h in every 48 h period for 8 days (4 cycles), 14 days (7 cycles) and 20 days (10 cycles) in total. The expression of both Phospho1 and Smpd3 was almost completely inhibited after 4 cycles, whereas 10 cycles were required to stimulate a similar response in Alpl expression. To explore the in vivo role of PHOSPHO1 in PTH-mediated osteogenesis, the effects of 14- and 28-day iPTH (80 µg/kg/day) administration was assessed in male wild-type (WT) and Phospho1-/- mice. The expression of Phospho1, Alpl, Smpd3, Enpp1, Runx2 and Trps1 expression was enhanced in the femora of WT mice following iPTH administration but remained unchanged in the femora of Phospho1-/- mice. After 28 days of iPTH administration, the anabolic response in the femora of WT was greater than that noted in Phospho1-/- mice. Specifically, cortical and trabecular bone volume/total volume, as well as cortical thickness, were increased in femora of iPTH-treated WT but not in iPTH-treated Phospho1-/- mice. Trabecular bone osteoblast number was also increased in iPTH-treated WT mice but not in iPTH-treated Phospho1-/-  mice. The increased levels of Phospho1, Alpl, Enpp1 and Smpd3 in WT mice in response to iPTH administration is consistent with their contribution to the potent anabolic properties of iPTH in bone. Furthermore, as the anabolic response to iPTH was attenuated in mice deficient in PHOSPHO1, this suggests that the osteoanabolic effects of iPTH are at least partly mediated via bone mineralisation processes.


Assuntos
Fosfatase Alcalina , Hormônio Paratireóideo , Masculino , Camundongos , Animais , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Densidade Óssea , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo
12.
J Popul Ther Clin Pharmacol ; 29(4): e46-e54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398597

RESUMO

Teratogenicity and hyperuricemia are considered as the major adverse effects of favipiravir, but less is known about other possible side effects which includes drug-induced liver damage and renal injury. In the current research, assessment of favipiravir-induced liver injury was performed by evaluating liver enzymes among patients with mild to moderate COVID-19 infection. A prospective cohort study was conducted on 66 patients diagnosed with mild to moderate COVID-19 infection who were treated with favipiravir for 5 days. During this period, a baseline assessment of liver enzymes (aspartate aminotransferase - AST, alanine transaminase - ALT and alkaline phosphatase - ALP) in addition to bilirubin before initiation of therapy and after 1 day of completion of therapy were carried out. The comparison of all measured parameters among all patients before and after receiving the treatment showed that non-significant differences were obtained in their levels. It was noticed that COVID-19 patients demonstrated high AST levels in which only 16 patients out of the all-subjected cases (66 patients) had AST levels of less than 45 U/L whereas the majority of patients showed normal ALT, ALP, and bilirubin levels. It was concluded that 5 days administration of favipiravir in mild to moderate COVID-19 patients who had no previous liver diseases did not affect the liver enzymes significantly and only transient elevations were occurred.


Assuntos
COVID-19 , Humanos , Estudos Prospectivos , Fígado , Fosfatase Alcalina/farmacologia , Bilirrubina/farmacologia
13.
BMC Oral Health ; 22(1): 437, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192671

RESUMO

BACKGROUND: The relationship between internal root resorption and oxidative stress has not yet been reported. This study aimed to add molecular insight into internal root resorption. The present study was conducted to investigate the effect of hydrogen peroxide (H2O2) as an inducer of oxidative stress on the calcification ability of human dental pulp cells (hDPCs) and the involvement of inositol 1, 4, 5-trisphosphate (IP3). MATERIAL AND METHODS: hDPCs (Lonza, Basel, Switzerland) were exposed to H2O2. Cell viability and reactive oxygen species (ROS) production were then evaluated. To investigate the effect of H2O2 on the calcification ability of hDPCs, real-time PCR for alkaline phosphatase (ALP) mRNA expression, ALP staining, and Alizarin red staining were performed. Data were compared with those of hDPCs pretreated with 2-aminoethyldiphenylborate (2-APB), which is an IP3 receptor inhibitor. RESULTS: H2O2 at concentrations above 250 µM significantly reduced cell viability (P < 0.01). More ROS production occurred in 100 µM H2O2-treated hDPCs than in control cells (P < 0.01). 2-APB significantly decreased the production (P < 0.05). H2O2-treated hDPCs showed significant reductions in ALP mRNA expression (P < 0.01), ALP activity (P < 0.01), and mineralized nodule deposition compared with negative control cells (P < 0.01). 2-APB significantly inhibited these reductions (P < 0.01, P < 0.05 and P < 0.01, respectively). Data are representative of three independent experiments with three replicates for each treatment and values are expressed as means ± SD. CONCLUSION: To the best of our knowledge, this is the first study documenting the involvement of IP3 signaling in the calcification ability of human dental pulp cells impaired by H2O2.


Assuntos
Polpa Dentária , Reabsorção da Raiz , Fosfatase Alcalina/farmacologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Peróxido de Hidrogênio/farmacologia , Inositol/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/farmacologia , Odontoblastos , Estresse Oxidativo , RNA Mensageiro , Espécies Reativas de Oxigênio
14.
J Adv Res ; 40: 95-107, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100336

RESUMO

INTRODUCTION: Basic fibroblast growth factor (bFGF) plays a critical role in odontoblast differentiation and dentin matrix deposition, thereby aiding pulpo-dentin repair and regeneration. OBJECTIVES: The purpose of this study was to clarify the effects of bFGF on plasminogen activation factors, TIMP-1), ALP; and SPARC (osteonectin) expression/production of stem cells from apical papilla (SCAP) in vitro; and the involvement of MEK/ERK, p38, Akt, and TAK1 signaling. METHODS: SCAP were exposed to bFGF with/without pretreatment and co-incubation with various signal transduction inhibitors (U0126, SB203580, LY294002, and 5Z-7-oxozeaenol). The expression of FGF receptors (FGFRs), PAI-1, uPA, p-ERK, p-TAK1, and p-p38 was analyzed via immunofluorescent staining. The gene expression and protein secretion of SCAP were determined via real-time PCR and ELISA. ALP activity was evaluated via ALP staining. RESULTS: SCAP expressed FGFR1, 2, 3, and 4. bFGF stimulated the PAI-1, uPA, uPAR, and TIMP-1 mRNA expression (p < 0.05). bFGF induced PAI-1, uPA, and soluble uPAR production (p < 0.05) but suppressed the ALP activity and SPARC production (p < 0.05) of SCAP. bFGF stimulated ERK, TAK1, and p38 phosphorylation of SCAP. U0126 (a MEK/ERK inhibitor) and 5Z-7-oxozeaenol (a TAK1 inhibitor) attenuated the bFGF-induced PAI-1, uPA, uPAR, and TIMP-1 expression and production of SCAP, but SB203580 (a p38 inhibitor) did not. LY294002, SB203580, and 5Z-7oxozeaenol could not reverse the inhibition of ALP activity caused by bFGF. Interestingly, U0126 and 5Z-7-oxozeaenol prevented the bFGF-induced decline of SPARC production (p < 0.05). CONCLUSION: bFGF may regulate fibrinolysis and matrix turnover via modulation of PAI-1, uPA, uPAR, and TIMP-1, but bFGF inhibited the differentiation (ALP, SPARC) of SCAP. These events are mainly regulated by MEK/ERK, p38, and TAK1. Combined use of bFGF and SCAP may facilitate pulpal/root repair and regeneration via regulation of the plasminogen activation system, migration, matrix turnover, and differentiation of SCAP.


Assuntos
Fosfatase Alcalina , Fator 2 de Crescimento de Fibroblastos , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Butadienos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Lactonas , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Nitrilas , Osteonectina/metabolismo , Osteonectina/farmacologia , Plasminogênio/metabolismo , Plasminogênio/farmacologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Resorcinóis , Transdução de Sinais , Células-Tronco/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Zearalenona/administração & dosagem
15.
J Oral Biosci ; 64(3): 279-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35977651

RESUMO

BACKGROUND: The intermittent administration of parathyroid hormone (PTH) has been prescribed to osteoporotic patients due to its bone anabolic effects. In addition to its actions on bone cells, PTH appears to affect bone-specific blood vessels. These blood vessels are derived from bone marrow sinusoids, which express EphB4, a hallmark of veinous vascular endothelial cells. Given the presence of osteo-vascular interactions, it is important to elucidate the effects of PTH on bone cells and blood vessels in murine models. HIGHLIGHTS: PTH stimulates preosteoblastic proliferation and osteoblastic bone formation. The former appears to be directly affected by PTH, whereas the latter requires osteoclast-mediated coupling. The administration of PTH through high-frequency dosage schemes accelerates bone turnover featuring remodeling-based bone formation, whereas low-frequency schemes cause mainly remodeling-based and partly modeling-based bone formation. Normally, many blood vessels lack alpha smooth muscle actin (αSMA)-immunoreactive vascular muscle cells surrounding basement membranes, indicating them being capillaries. However, PTH administration increases the number of blood vessels surrounded by αSMA-positive cells. These αSMA-positive cells spread out of blood vessels and express alkaline phosphatase and c-kit, suggesting their potential to differentiate into osteogenic and vascular endothelial/perivascular cells. Unlike bone cells, αSMA-positive cells did not appear in the periphery of blood vessels in the kidney and liver, and the thickness of the tunica media did not change regardless of PTH administration. CONCLUSION: Based on the results of the study and presence of osseous-vascular interactions, PTH appears to influence not only osteoblastic cells, but also blood vessels in bone.


Assuntos
Anabolizantes , Hormônio Paratireóideo , Actinas/farmacologia , Fosfatase Alcalina/farmacologia , Anabolizantes/farmacologia , Animais , Células Endoteliais , Humanos , Camundongos , Osteoblastos , Osteogênese , Hormônio Paratireóideo/farmacologia
16.
Post Reprod Health ; 28(3): 149-157, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35938207

RESUMO

OBJECTIVE: Evaluate the effects of ultra-low-dose hormone therapy (Ultra-LD HT) with 17ß-estradiol 0.5 mg and norethisterone acetate 0.1 mg (E2 0.5/NETA 0.1) versus placebo on bone turnover markers (BTM) in postmenopausal women. STUDY DESIGN: A multicenter, double-blind, randomized, placebo-controlled study was performed with 107 participants who received one tablet daily of E2 0.5/NETA 0.1 or placebo for 24-weeks. Bone formation markers-N-terminal propeptide of type I procollagen (PINP) and Bone-specific alkaline phosphatase (BSAP), and bone resorption markers-C-telopeptide of type I collagen (CTX-I) and N-telopeptide crosslinked of type I collagen (NTX) were assessed before and at 12 and 24-weeks of treatment. RESULTS: Women treated with E2 0.5/NETA 0.1 had a significant reduction in the PINP marker from baseline (58.49 ± 21.12 µg/L) to week 12 (48.31 ± 20.99 µg/L) and week 24 (39.16 ± 16.50 µg/L). Placebo group, the PINP marker did not differ significantly. The analysis of the BSAP indicated a significant increase in the placebo group (13.8 ± 5.09 µg/L and 16.29 ± 4.3 µg/L, at baseline and week 24, respectively), whereas in the treatment group the values did not change. The analysis of the NTX marker showed a significant reduction only in the treatment group (43.21 ± 15.26 nM/mM and 33.89 ± 14.9 nM/mM, at baseline and week 24, respectively). CTX-I had a significant decrease in the treatment group from baseline (0.3 ± 0.16 ng/L) to week 12 (0.21 ± 0.14 ng/L) and week 24 (0.21 ± 0.12 ng/L). CONCLUSION: Women receiving E2 0.5/NETA 0.1 experienced reductions in bone resorption and formation markers, an expected effect during the anti-resorptive therapy, suggesting a protective bone effect with the Ultra-LD HT.


Assuntos
Reabsorção Óssea , Osteoporose Pós-Menopausa , Fosfatase Alcalina/farmacologia , Fosfatase Alcalina/uso terapêutico , Biomarcadores/análise , Densidade Óssea , Remodelação Óssea , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Colágeno Tipo I/farmacologia , Colágeno Tipo I/uso terapêutico , Método Duplo-Cego , Estradiol , Feminino , Humanos , Acetato de Noretindrona/farmacologia , Osteoporose Pós-Menopausa/tratamento farmacológico , Pós-Menopausa
17.
Cell Stress Chaperones ; 27(5): 545-560, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35951259

RESUMO

Cigarette smoke exposure increases the production of free radicals leading to initiation of several pathological conditions by triggering the oxidative stress and inflammatory cascade. Olive fruit owing to its unique phytochemical composition possesses antioxidant, immune modulatory, and anti-inflammatory potential. Considering the compositional alterations in olive fruits during ripening, the current experimental trail was designed to investigate the prophylactic role of green and black olives against the oxidative stress induced by cigarette smoke exposure in rats. Purposely, rats were divided into five different groups: NC (negative control; normal diet), PC [positive control; normal diet + smoke exposure (SE)], drug (normal diet + SE + citalopram), GO (normal diet + SE + green olive extract), and BO (normal diet + SE + black olive extract). Rats of all groups were exposed to cigarette smoke except "NC" and were sacrificed for collection of blood and organs after 28 days of experimental trial. The percent reduction in total oxidative stress by citalopram and green and black olive extracts in serum was 29.72, 58.69, and 57.97%, respectively, while the total antioxidant capacity increased by 30.78, 53.94, and 43.98%, accordingly in comparison to PC. Moreover, malondialdehyde (MDA) was reduced by 29.63, 42.59, and 45.70% in drug, GO, and BO groups, respectively. Likewise, green and black olive extracts reduced the leakage of hepatic enzymes in sera, alkaline phosphatase (ALP) by 23.44 and 25.80% and 35.62 and 37.61%, alanine transaminase (ALT) by 42.68 and 24.39% and 51.04 and 35.41%, and aspartate transaminase (AST) by 31.51 and 16.07% and 40.50 and 27.09% from PC and drug group, respectively. Additionally, olive extracts also maintained the antioxidant pool, i.e., superoxide dismutase, catalase, and glutathione in serum. Furthermore, histological examination revealed that olive extracts prevented the cigarette smoke-induced necrosis, pyknotic alterations, and congestion in the lung, hepatic, and renal parenchyma. Besides, gene expression analysis revealed that olive extracts and citalopram decreased the brain and lung damage caused by stress-induced upregulation of NRF-2 and MAPK signaling pathways. Hence, it can be concluded that olives (both green and black) can act as promising antioxidant in alleviating the cigarette smoke-induced oxidative stress.


Assuntos
Fumar Cigarros , Olea , Alanina Transaminase , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Aspartato Aminotransferases , Produtos Biológicos , Catalase/metabolismo , Citalopram/metabolismo , Citalopram/farmacologia , Frutas , Glutationa/metabolismo , Fígado/metabolismo , Malondialdeído/metabolismo , Olea/metabolismo , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
18.
Contrast Media Mol Imaging ; 2022: 3670007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845743

RESUMO

To investigate the changes in bone mineral density, bone metabolism, and efficacy of nutritional intervention combined with calcium carbonate D3 tablets in patients with osteoporosis, a RevMan 5.2 software meta-analysis was conducted in this study. According to the therapeutic direction of nutritional intervention combined with calcium carbonate D3 tablets for osteoporosis patients, relevant literature were searched in Wanfang Medical, CNKI, VIP, and PubMed literature databases at home and abroad. Keywords included bone mineral density, bone metabolism, blood calcium (Ca), blood phosphorus (P), osteocalcin (OC), bone mineral density (BMD), serum alkaline phosphatase (ALP), efficacy, osteoporosis, and nutritional intervention. Literature that met the criteria were deleted, and meta-analysis was performed using RevMan 5.2 software. The results indicate that a total of 10 Chinese literature were included. Compared with the monotherapy group, the clinical efficacy, osteocalcin, BMD, alkaline phosphatase, calcium, and phosphorus were significantly higher in the combination group (P < 0.05). Based on calcium carbonate D3, treatment combined with nutritional intervention can enhance the clinical efficacy, bone metabolism, and bone mineral density of patients with osteoporosis, and nutritional intervention combined with calcium carbonate D3 tablets is a feasible program to promote the recovery of patients with osteoporosis.


Assuntos
Densidade Óssea , Osteoporose , Fosfatase Alcalina/farmacologia , Fosfatase Alcalina/uso terapêutico , Cálcio/farmacologia , Cálcio/uso terapêutico , Carbonato de Cálcio/farmacologia , Carbonato de Cálcio/uso terapêutico , Humanos , Osteocalcina/farmacologia , Osteocalcina/uso terapêutico , Osteoporose/tratamento farmacológico , Fósforo/farmacologia , Fósforo/uso terapêutico , Comprimidos/farmacologia , Comprimidos/uso terapêutico
19.
Cell Biochem Funct ; 40(6): 636-646, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35848411

RESUMO

Melatonin (MEL) has antioxidant properties and participates in osteogenic differentiation. In periodontitis, in which increased oxidative stress and bone resorption are involved, mesenchymal stem cells derived from the gingiva (GMSCs) combined with MEL could be relevant for osteogenic regeneration. In this study, we studied the antioxidant and differentiating effect of MEL on an in vitro system of GMSCs. Primary culture of GMSCs from Wistar rats was developed to evaluate differentiation into osteoblasts with an appropriate medium with or without MEL. Marker genes of mesenchymal stem cells by real time-polymerase chain reaction, clonogenic capacity, and cell migration after wound assay were used to characterize GMSCs as mesenchymal stem cells. Alkaline phosphatase activity and the alizarin red technique were used to evaluate osteogenic activity and differentiation. MEL increased alkaline phosphatase activity and alizarin red values, promoting osteogenic differentiation. Besides this, MEL protected GMSCs in a model of cellular damage related to oxidative stress, returning viability to baseline. MEL was more effective in promoting and protecting GMSCs by the production of osteogenic cells when oxidative stress is present. This evidence supports the use of MEL as a novel bone-regenerative therapy in periodontal diseases.


Assuntos
Melatonina , Células-Tronco Mesenquimais , Fosfatase Alcalina/farmacologia , Animais , Antioxidantes/farmacologia , Diferenciação Celular , Células Cultivadas , Gengiva , Melatonina/farmacologia , Osteoblastos , Osteogênese , Ratos , Ratos Wistar
20.
Arch Razi Inst ; 77(1): 235-239, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35891748

RESUMO

Date seeds have been studied for their possible health advantages as they are employed in various traditional remedies. This study aimed to investigate how date affected hematology, renal, and liver function in rabbits before and after date feeding. In total, 30 rabbits were used in this investigation, and they were divided into two groups (n=15). Group one (G1) was considered the control group and received only a meal without dates for 30 days, and group two (G2) was given date seed extract a about 30 ml/kg b.w. for 30 days. The findings revealed that daily oral administration of date extract resulted in a considerable increase in hemoglobin (Hgb) concentration. It is now recognized as a useful source of natural therapeutic ingredients for a variety of ailments. The study results showed that the oral administration of dates led to a significant increase in Hgb concentration, Hgb indices (MCH, MCV, MCHC, PLT, WBCs, and RBCs) and a significant increase in total protein, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine, and blood urea nitrogen levels (P≤0.05). However, there were no significant changes in albumin in G2, compared to G1. Finally, dates may help to increase biochemical and hematological parameters in rabbits.


Assuntos
Eritrócitos , Rim , Alanina Transaminase/farmacologia , Fosfatase Alcalina/farmacologia , Animais , Coelhos , Estômago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...